TARTNESS - ترجمة إلى العربية
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

TARTNESS - ترجمة إلى العربية


TARTNESS         
  • Taste buds and papillae of the tongue
  • This diagram linearly (unless otherwise mentioned) tracks the projections of all known structures that allow for taste to their relevant endpoints in the human brain.
  • The diagram depicted above shows the signal transduction pathway of the bitter taste. Bitter taste has many different receptors and signal transduction pathways. Bitter indicates poison to animals. It is most similar to sweet. Object A is a taste bud, object B is one taste cell, and object C is a neuron attached to object B. I. Part I is the reception of a molecule.1. A bitter substance such as quinine, is consumed and binds to G Protein-coupled receptors.II. Part II is the transduction pathway 2. Gustducin, a G protein second messenger, is activated. 3. Phosphodiesterase, an enzyme, is then activated. 4. Cyclic nucleotide, cNMP, is used, lowering the concentration 5. Channels such as the K+, potassium, channels, close. III. Part III is the response of the taste cell. 6. This leads to increased levels of Ca+. 7. The neurotransmitters are activated. 8. The signal is sent to the neuron.
  • The diagram depicts the signal transduction pathway of the sour or salty taste. Object A is a taste bud, object B is a taste receptor cell within object A, and object C is the neuron attached to object B.

I. Part I is the reception of hydrogen ions or sodium ions.

1. If the taste is sour, H<sup>+</sup> ions, from acidic substances, pass through H<sup>+</sup> channels. Depolarization takes place

II. Part II is the transduction pathway of the relay molecules. 2. Cation, such as K<sup>+</sup>, channels are opened.

III. Part III is the response of the cell.

3. An influx of Ca<sup>+</sup> ions is activated.

4. The Ca<sup>+</sup> activates neurotransmitters.

5. A signal is sent to the neuron attached to the taste bud.
  • The diagram above depicts the signal transduction pathway of the sweet taste. Object A is a taste bud, object B is one taste cell of the taste bud, and object C is the neuron attached to the taste cell. I. Part I shows the reception of a molecule. 1. Sugar, the first messenger, binds to a protein receptor on the cell membrane. II. Part II shows the transduction of the relay molecules. 2. G Protein-coupled receptors, second messengers, are activated. 3. G Proteins activate adenylate cyclase, an enzyme, which increases the cAMP concentration. Depolarization occurs. 4. The energy, from step 3, is given to activate the K+, potassium, protein channels.III. Part III shows the response of the taste cell. 5. Ca+, calcium, protein channels is activated.6. The increased Ca+ concentration activates neurotransmitter vesicles. 7. The neuron connected to the taste bud is stimulated by the neurotransmitters.
SENSE THAT DETECTS TYPES OF CHEMICALS THAT TOUCH THE TONGUE
Basic taste; Basic tastes; Gustatory; Gustatory system; Sour; Bitter (taste); Sourness; Bitter taste; Yumminess; Saltiness; Primary tastes; Gustation; Tasteful; Sense of taste; Four tastes; Gustatory sense; Gustatory sensation; Tangiest; Sour taste; Tartness; Bitterness (taste); Tart (flavor); Gustaoception; Kokumi; Gustatory systems; Oleogustus; Draft:Oleogustus; Oiliogustus; Oliogustus; Bitter flavor; Primary taste; Taſte; Taste perception; Taste threshold; Salty taste; Salty (taste); Sour (taste); Flavor (taste); Flavour (taste)

ألاسم

حِدَّة ( الطَّعْمِ ) ; حَرْوَة

sour         
  • Taste buds and papillae of the tongue
  • This diagram linearly (unless otherwise mentioned) tracks the projections of all known structures that allow for taste to their relevant endpoints in the human brain.
  • The diagram depicted above shows the signal transduction pathway of the bitter taste. Bitter taste has many different receptors and signal transduction pathways. Bitter indicates poison to animals. It is most similar to sweet. Object A is a taste bud, object B is one taste cell, and object C is a neuron attached to object B. I. Part I is the reception of a molecule.1. A bitter substance such as quinine, is consumed and binds to G Protein-coupled receptors.II. Part II is the transduction pathway 2. Gustducin, a G protein second messenger, is activated. 3. Phosphodiesterase, an enzyme, is then activated. 4. Cyclic nucleotide, cNMP, is used, lowering the concentration 5. Channels such as the K+, potassium, channels, close. III. Part III is the response of the taste cell. 6. This leads to increased levels of Ca+. 7. The neurotransmitters are activated. 8. The signal is sent to the neuron.
  • The diagram depicts the signal transduction pathway of the sour or salty taste. Object A is a taste bud, object B is a taste receptor cell within object A, and object C is the neuron attached to object B.

I. Part I is the reception of hydrogen ions or sodium ions.

1. If the taste is sour, H<sup>+</sup> ions, from acidic substances, pass through H<sup>+</sup> channels. Depolarization takes place

II. Part II is the transduction pathway of the relay molecules. 2. Cation, such as K<sup>+</sup>, channels are opened.

III. Part III is the response of the cell.

3. An influx of Ca<sup>+</sup> ions is activated.

4. The Ca<sup>+</sup> activates neurotransmitters.

5. A signal is sent to the neuron attached to the taste bud.
  • The diagram above depicts the signal transduction pathway of the sweet taste. Object A is a taste bud, object B is one taste cell of the taste bud, and object C is the neuron attached to the taste cell. I. Part I shows the reception of a molecule. 1. Sugar, the first messenger, binds to a protein receptor on the cell membrane. II. Part II shows the transduction of the relay molecules. 2. G Protein-coupled receptors, second messengers, are activated. 3. G Proteins activate adenylate cyclase, an enzyme, which increases the cAMP concentration. Depolarization occurs. 4. The energy, from step 3, is given to activate the K+, potassium, protein channels.III. Part III shows the response of the taste cell. 5. Ca+, calcium, protein channels is activated.6. The increased Ca+ concentration activates neurotransmitter vesicles. 7. The neuron connected to the taste bud is stimulated by the neurotransmitters.
SENSE THAT DETECTS TYPES OF CHEMICALS THAT TOUCH THE TONGUE
Basic taste; Basic tastes; Gustatory; Gustatory system; Sour; Bitter (taste); Sourness; Bitter taste; Yumminess; Saltiness; Primary tastes; Gustation; Tasteful; Sense of taste; Four tastes; Gustatory sense; Gustatory sensation; Tangiest; Sour taste; Tartness; Bitterness (taste); Tart (flavor); Gustaoception; Kokumi; Gustatory systems; Oleogustus; Draft:Oleogustus; Oiliogustus; Oliogustus; Bitter flavor; Primary taste; Taſte; Taste perception; Taste threshold; Salty taste; Salty (taste); Sour (taste); Flavor (taste); Flavour (taste)
صِفَة : حامض . رائب . فاسد . بغيض . شَكِس . نكِد
----------------------------------------
فِعْل : يتحمّض . يَفسد . يصبح شكِساً أو نَكِداً . يحمِّض . يُفِسد . يُغْضِب
sour         
  • Taste buds and papillae of the tongue
  • This diagram linearly (unless otherwise mentioned) tracks the projections of all known structures that allow for taste to their relevant endpoints in the human brain.
  • The diagram depicted above shows the signal transduction pathway of the bitter taste. Bitter taste has many different receptors and signal transduction pathways. Bitter indicates poison to animals. It is most similar to sweet. Object A is a taste bud, object B is one taste cell, and object C is a neuron attached to object B. I. Part I is the reception of a molecule.1. A bitter substance such as quinine, is consumed and binds to G Protein-coupled receptors.II. Part II is the transduction pathway 2. Gustducin, a G protein second messenger, is activated. 3. Phosphodiesterase, an enzyme, is then activated. 4. Cyclic nucleotide, cNMP, is used, lowering the concentration 5. Channels such as the K+, potassium, channels, close. III. Part III is the response of the taste cell. 6. This leads to increased levels of Ca+. 7. The neurotransmitters are activated. 8. The signal is sent to the neuron.
  • The diagram depicts the signal transduction pathway of the sour or salty taste. Object A is a taste bud, object B is a taste receptor cell within object A, and object C is the neuron attached to object B.

I. Part I is the reception of hydrogen ions or sodium ions.

1. If the taste is sour, H<sup>+</sup> ions, from acidic substances, pass through H<sup>+</sup> channels. Depolarization takes place

II. Part II is the transduction pathway of the relay molecules. 2. Cation, such as K<sup>+</sup>, channels are opened.

III. Part III is the response of the cell.

3. An influx of Ca<sup>+</sup> ions is activated.

4. The Ca<sup>+</sup> activates neurotransmitters.

5. A signal is sent to the neuron attached to the taste bud.
  • The diagram above depicts the signal transduction pathway of the sweet taste. Object A is a taste bud, object B is one taste cell of the taste bud, and object C is the neuron attached to the taste cell. I. Part I shows the reception of a molecule. 1. Sugar, the first messenger, binds to a protein receptor on the cell membrane. II. Part II shows the transduction of the relay molecules. 2. G Protein-coupled receptors, second messengers, are activated. 3. G Proteins activate adenylate cyclase, an enzyme, which increases the cAMP concentration. Depolarization occurs. 4. The energy, from step 3, is given to activate the K+, potassium, protein channels.III. Part III shows the response of the taste cell. 5. Ca+, calcium, protein channels is activated.6. The increased Ca+ concentration activates neurotransmitter vesicles. 7. The neuron connected to the taste bud is stimulated by the neurotransmitters.
SENSE THAT DETECTS TYPES OF CHEMICALS THAT TOUCH THE TONGUE
Basic taste; Basic tastes; Gustatory; Gustatory system; Sour; Bitter (taste); Sourness; Bitter taste; Yumminess; Saltiness; Primary tastes; Gustation; Tasteful; Sense of taste; Four tastes; Gustatory sense; Gustatory sensation; Tangiest; Sour taste; Tartness; Bitterness (taste); Tart (flavor); Gustaoception; Kokumi; Gustatory systems; Oleogustus; Draft:Oleogustus; Oiliogustus; Oliogustus; Bitter flavor; Primary taste; Taſte; Taste perception; Taste threshold; Salty taste; Salty (taste); Sour (taste); Flavor (taste); Flavour (taste)
‎ حامِض‎

تعريف

tartness
n.
1.
Sourness, acidity.
2.
Acrimony, harshness, asperity, sourness, severity, piquancy, sharpness, keenness, acerbity, crabbedness.
أمثلة من مجموعة نصية لـ٪ 1
1. They‘re firm, she said, with sweetness, but not tartness.‘‘ I‘ll buy these all the time, where I‘ll pass up the other ones,‘‘ said Lucking, 55.
2. They‘re firm, she said, with "sweetness, but not tartness." "I‘ll buy these all the time, where I‘ll pass up the other ones," said Lucking, 55.
3. They also like to temper their curries with local fruits such as mango, bilimbi (a gourd–like fruit with a similar tartness that you find in a starfruit) and papaya (which also acts as a meat tenderiser). We must have had a different curry each day we were there.
4. Don‘t ask.) Monday‘s opinion was written by Chief Justice John Roberts, who, during last December‘s oral argument, blandly said of the schools‘ desire to discriminate against the military, "You are perfectly free to do that, if you don‘t take the money." On Monday Roberts‘s shredding of the law schools‘ arguments included a tartness that betrayed impatience with law professors who cannot understand pertinent distinctions.
5. The back label says: ‘The bright red ruby colour, full of harmonious taste with a piquancy, tartness, the strong bouquet in which aromas of almonds and a violet are incorporated, is one of the best table red wines – cabernet.‘ But it‘s very sharp, the fruit is not nice and I found it quite dusty.